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Abstract—We show how the discrete coefficient filter design problem can
be solved with a moving horizon optimization approach. The computation
time of this procedure is determined by the optimization horizon and does
not grow exponentially with the filter length. �� design methods are a
special case of the proposed procedure.

Index Terms—Digital filter wordlength effects, least mean square
methods, moving horizon optimization, optimization methods, quadratic
programming, quantized coefficients, sigma-delta modulation.

I. INTRODUCTION

In many hardware critical applications, the problem of approxi-
mating an infinite precision target filter T (z)with a discrete coefficient
one H(z) arises. A straightforward solution to this problem is to syn-
thesize H(z) by simply rounding (quantizing) the corresponding
coefficients of T (z); see, e.g., [1]. Alternatively, in [2]–[7], ��-mod-
ulation techniques have been utilized. The rationale behind these
techniques relies on exploiting the noise-shaping capabilities of a
closed loop. The adoption of a white quantization noise model allows
the designer to push the finite wordlength artifacts to noncritical
frequency bands by proper tuning of a feedback filter. As a conse-
quence, the resulting filter H(z) is more similar to T (z) in important
frequency bands and, thus, corresponds to a better design.

It is also possible to pose the problem directly in an optimization
framework; see, e.g., [8]. Here, it is useful to introduce a frequency
weighting function W (ej!) and to minimize some measure of the
weighted frequency response error W (ej!)(T (ej!) � H(ej!)).
Most research efforts have dealt with linear-phase FIR filters and has
concentrated on minimizing the peak weighted error (L1-norm) or
the mean square norm L2 over a finite frequency grid.

In the case of the L2-norm, the resulting combinatorial optimiza-
tion problem can be stated as an integer quadratic program. While, in
principle, it can be solved exactly via tree search algorithms (see, e.g.,
[9]), these lead to prohibitive computation times for long finite impulse
response (FIR) structures. Thus, more efficient procedures that yield
suboptimal designs have been developed. Examples include relaxation
methods [10], local searches [11], simulated evolution [12], and adap-
tations of recursive least squares [13].

In the present work, we propose a novel approach to the L2 dis-
crete coefficient FIR filter design problem without being restricted to
linear-phase structures. Rather than evaluating the objective function
over a finite set of frequencies, we pose the approximation problem as
an exact minimization in the time domain. This motivates us to formu-
late a practical iterative design procedure, where, at each step, a simpler
quadratic program with finite set constraints is solved. The size of each
of these programs depends on a design parameter: the horizon. This
allows the designer to trade off the quality of the filter obtained versus
the computational effort required. Larger horizons yield, in general,
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better designs. In the simplest case of a unitary horizon, the method-
ology proposed reduces to the �� encoders mentioned earlier. Thus,
our approach establishes a link between optimization-based methods
and �� ideas. Our procedure is also related to the approach proposed
in [14], where a time-domain description of the quadratic cost is split
into a set of partial costs. A distinguishing feature of our method is that
it deploys moving horizon optimization, where exactly one coefficient
is fixed at every optimization step. Moreover, unlike tree search and
simulated annealing-based methods, the computation time does not in-
crease exponentially in the filter length, making it especially suitable
for long FIR filters.

II. FORMULATION OF THE PROBLEM

In the sequel, we will use upper case boldface letters to denote ma-
trices and lower case boldface letters to denote vectors. In particular, In
denotes the identity matrix inRn�n. The superscript T refers to trans-
position. The symbol z is the argument of the Z-transform, whereas �
denotes the shift operator that characterizes recursions such as �xk =
xk+1.
As foreshadowed in the introduction, we consider an FIR or stable

infinite impulse response (IIR) discrete-time filter

T (z) =

1

i=0

tiz
�i
:

Our goal is to approximate this target via an FIR filter

H(z) =

M�1

i=0

hiz
�i (1)

whereM is the filter impulse response length. Each of the coefficients
hi in (1) is restricted to belonging to a finite set of scalars1 , i.e.,

hj 2 ; 8 j 2 f0; 1 . . . ;M � 1g: (2)

Remark 1: Note that we do not need to specify the constraint set
further. Thus, the framework adopted encompasses various finite-set

constraints on the coefficients. Examples include where a finite set of
consecutive integers is used or where the coefficients are expressible as
a finite sum of powers-of-two terms.
The associated discrete coefficient FIR filter design problem can be

stated in an optimization framework by utilizing the following (fre-
quency domain) L2 performance measure

V
1

2�

2�

0

jW (ej!)(T (ej!)�H(ej!))j2d! (3)

where T (ejw) and H(ejw) are the frequency responses of T (z) and
H(z), respectively. In this cost function, we have included frequency
weighting bymeans of the termW (ej!). This filter weights the relative
importance of the approximation error (ripple) in different frequency
bands. Thus, the finite wordlength effect can be concentrated in tolerant
bands and reduced in more critical bands. (If the power spectrum of the
signal to be applied at the input to the filter is known, thenW (ej!) can
be adjusted to include this effect.) We assume that W (z) is of order
n 2 , stable, and described via

W (z) = d+ c
T (zIn �A)�1b (4)

1We do not consider the design of an unconstrained filter gain explicitly.
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or, equivalently, via

W (z) =

1

i=0

wiz
�i

with2

w0 = d; wi = c
T
A
i�1

b; i � 1: (5)

In these two expressions, d is a scalar, A 2 n�n, and c and b are
vectors in n.

The discrete-coefficient filter design problem can thus be regarded
as one of finding coefficients in (1) that yield the minimum cost V
defined in (3).MinimizingV is amixed-integer programming problem,
which is, in general, an NP-hard combinatorial optimization problem.
Its complexity is exponential in the filter impulse response length. As
a consequence, direct minimization of V becomes impractical ifH(z)
is allowed to have a large number of coefficients.

The key contribution of the present work is an algorithm that yields
near-optimal discrete coefficient filter designs, without the need to
solve the entire combinatorial optimization problem. To achieve this
goal, we translate V into the time-domain by utilizing Parseval’s
theorem. This leads to

V =

1

i=0

e
2

i (6)

where the terms feig satisfy
1

i=0
eiz

�i = E(z), with

E(z) W (z)(T (z)�H(z)): (7)

From (4), the sequence feig can also be described as the output of a
state-space system:

xi+1 =Axi + b(ti � hi)

ei = c
T
xi + d(ti � hi) (8)

where xi 2 n is the system state, and ei 2 .
Expressions (3) and (6) are equivalent, and in principle, their min-

imization over all possible finite set constrained coefficients hj , j 2
f0; . . . ;M � 1g requires a similar computational effort. However, in
the sequel, we will further embellish the time-domain description (6),
leading to a simpler computational problem.

III. MOVING HORIZON OPTIMIZATION

In this section, we develop a practical method for designing discrete-
coefficient filters by posing the problem as one of minimizing a set of
constrained quadratic programs of moderate size.

The cost function (6) motivates us to develop an iterative procedure
to optimize the filter coefficients hj . It is based on the fact that the effect
of hk on distant values of ek+i can often be neglected. Following this
idea, we propose to fix a relatively small horizon N , where 1 � N <

M , and to consider the following set of finite horizon cost functions:

Vk

k+N�1

j=k

e
2

j ; k 2 f0; 1; . . . ;M �Ng: (9)

Thus, we have replaced V by a set of finite horizon costs Vk . Each of
these costs takes into account overlappingwindows of data e2j (compare
with the formulation in [14]) and examines the approximation error

2Note that, if ( ) is FIR, then = 0, .

Fig. 1. Moving horizon principle N = 5.

that results when deciding on N coefficients of H(z). These decision
variables can be gathered into the vectors

hk [hk hk+1 . . . hk+N�1 ]
T

k 2f0; 1; . . . ;M �Ng:

We will write Vk(hk) in order to make this dependence explicit.
In accordance with the constraint (2), given the state xk [see (8)],

the resulting optimization problem corresponds to finding

h
?
k arg min

h 2

Vk(hk) (10)

where the set N � N is defined via the Cartesian product

N � � � � � :

Although the vector h?k obtained from the finite-set constrained
quadratic program (10) contains N coefficients, we only fix its first
element, namely

ĥk [ 1 0 . . . 0 ]h?k: (11)

This value is utilized in the design of H(z) by setting

hk  � ĥk (12)

[see (1)]. Furthermore, h?k also yields the successor state xk+1 via

xk+1 = Axk + b(tk � ĥk) (13)

which follows from (8).
Having fixed hk , at the next step, a new optimization is carried out

using the updated state xk+1 and cost Vk(hk+1), yielding h?k+1, etc.
As can be seen in Fig. 1, which depicts the startup of the procedure, the
window, which is here of fixed size N = 5, slides (or moves) forward
at each optimization step.
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Thus, the methodology proposed here forms an iterative procedure
to optimize the filter coefficients. It mirrors the strategy deployed in
some predictive control architectures, where the `1-norm of decision
variables needs to be bounded;3 see e.g., [16].

In order to provide the entire filter H(z), the procedure starts with
k = 0 and x0 = 0, since all filters are causal; see (6). It finishes at
k = M � N , after M � N + 1 minimization steps. At this last step,
N coefficients have been obtained by setting

[hM�N hM�N+1 . . . hM�1 ] � (h?M�N)
T
:

Since the discrete optimization problem (10) involves only N deci-
sion variables, in the case of largeM , the complexity of the computa-
tions required is significantly lower than that of the original problem
of minimizing the infinite-horizon cost V defined in (3) via an exhaus-
tive search. More precisely, the computational complexity of the design
procedure proposed here is only linear in (M �N) and exponential in
the horizon lengthN . This should be contrasted with direct minimiza-
tion of V , which requires a number of computations and is exponential
in the filter length M ! As a consequence, the new procedure is espe-
cially useful when long impulse response filters are to be designed. In
principle, choosing larger values ofN will provide a better approxima-
tion to the target filter T (z). However, as illustrated bymeans of the ex-
ample included in Section VI, a good filter may often be obtained with
a relatively small horizon, hence, at the expense of only very modest
computational time.

Since the complexity of minimizing Vk is only moderate for small
horizonsN , our proposal here is to solve forh?k without any further ap-
proximations. To that extent, in the following section, we will provide
an expression for the optimizer (10), which allows us to implement the
optimization procedure in a simple manner and to establish the rela-
tionship with existing design methods.
Remark 2 (Extension to IIR Filters): While the main focus of the

present work lies in the design of FIR filters, the proposed method can
be extended to the IIR case. Details are included in Appendix A.

IV. CLOSED-LOOP IMPLEMENTATION

The solution of (10) requires one to solve a quadratic program with
finite-set constraints. This can be done, in principle, by utilizing Dy-
namic Programming recursions; see, e.g., [11]. More conveniently, the
solution h?k can be characterized by means of Lemma 1 stated below.
It makes use of the following definition of a vector quantizer.
Definition 1 (Nearest Neighbor Quantizer): Given a countable set

of vectors B = fb1;b2; . . .g �
n , the nearest neighbor quantizer

is defined as a mapping qB: n ! B that assigns to each vector f 2
n the closest element of B (as measured by the Euclidean norm),

i.e., qB(f) = b 2 B if and only if b satisfies

(f � b)T (f � b) � (f � bj)
T (f � bj); 8 bj 2 B:

Note that in the scalar case (nB = 1), this definition allows one
to characterize the procedure of direct rounding of coefficients as ana-
lyzed, e.g., in [1] via

hj  � q (tj); 8 j 2 f0; . . . ;M � 1g: (14)

Lemma 1: Suppose N = fv1;v2; . . . ;vrg. Then, h?k in (10) is
given by

h
?
k =����1q (���tk +���xk); where: (15)

3Recently, we have been working on extending the framework to finite-set
constraints; see, e.g., [15].

Fig. 2. Closed-loop implementation of the optimization procedure.

tk

tk

tk+1
...

tk+N�1

; ���

c
T

c
T
A

...
c
T
A
N�1

���

d 0 . . . 0

w1 d
. . .

...
...

. . .
. . . 0

wN�1 . . . w1 d

(16)

and where wi are the impulse responses ofW (z) included in (5).
The nonlinearity q (�) is a nearest neighbor quantizer, as described

in Definition 1. The image of this mapping is the set

N fv1;v2; . . . ;vrg �
N
; with: vi = ���vi; vi 2

N
: (17)

Proof: The proof is included in Appendix B.
The characterization given in Lemma 1 allows us to implement the

iterative design method presented in Section III (not the filterH(z)) as
the closed loop depicted in Fig. 2. In this figure, the filterW(�) hasN
inputs and outputs and is defined as

W(�) ��� +���(�In �A)�1b[ 1 0 . . . 0 ]:

Note that W depends only on the impulse responses of W and not
on the particular realization chosen in (4). This circuit summarizes the
main contribution of this work.
Lemma 1 allows us to establish the relationship that exists to some

schemes described in the literature, as detailed in Section V.

V. RELATIONSHIP TO ��-MODULATION ENCODERS

As a special case, consider a unitary horizon, namely, N = 1 and a
filterW (z) with unitary feed-through, i.e., with d = 1. In this simple
case, the vectors and matrices defined in (16) simplify to tk = tk ,
��� = c

T , and ��� = 1. Moreover, from (11), it follows that h?k = ĥk ,
and the set N defined in (17) reduces to . Thus, the result (15) gives

ĥk = q (tk + c
T
xk):

On the other hand, (4), (12), and (13) yield that

c
T
xk = (W (�)� 1)(tk � ĥk):

Therefore, the proposed method satisfies

ĥk = q (W (�)tk � (W (�)� 1)ĥk) (18)

and can be implemented as in Fig. 3. As a consequence, in the
horizon-one case, our scheme is equivalent to the ��-Modulation
scheme utilized in [6] for the design of discrete coefficient FIR filters.
It also embraces [7], where W (�) is restricted to be of the form
W (�) = 1 + p�1

i=1
bi�
�i �1 and (save for a unitary delay element)

the single- and double-loop structures of [2]–[5], in which case,
W (�) = (1� ��1)�1 andW (�) = (1� ��1)�2, respectively.4

4Minor differences exist with respect to initialization procedures [4]–[7] and,
in some cases [2], [3] the use of oversampling.
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Fig. 3. Closed-loop implementation of the horizon-one case.

Fig. 4. Frequency response of the target filter (solid) T (z) and of the
frequency weighting filter (dashed)W (z).

The relationship established above (which incidentally is related to
the work described by us in [17]) allows us to reinterpret the��-Mod-
ulation schemes from an optimization based point of view. We see that
they are embedded in the more general design scheme proposed here.
The main advantage of using N > 1 follows from the fact that, with
larger horizons, more information is taken into account in the coeffi-
cient allocation process. As a consequence, the proposed scheme with
N > 1 will typically give rise to better filters than those provided by
��-based methods.

VI. EXAMPLE

Suppose that the target filter T (z) is an equirriple lowpass FIR filter
of length 100 generated by the Parks–McClellan algorithm and scaled,
such that its coefficients satisfy �32 � ti � 32, 8 i 2 f0; . . . ; 99g.
The frequency weighting is given by

W (z) =
z2 + 0:91z

z2 � 1:335z + 0:664
:

This filter has been used to model the human ear’s sensitivity to low-
level noise power (at 44.1 [kHz] sampling rate); see, e.g., [17]. Fig. 4
shows the frequency response of both filters.

Given the constraint set

= f�32;�31; . . . ; 31g

we synthesize FIR filters of lengthM = 100 with moving horizons of
N = 1, 2 and 3. Fig. 5 displays the achieved costs V ; see (3). Here,
N = 0 denotes direct quantization of the coefficients as in (14). As
can be seen in Fig. 5, the design with N = 1 (or, equivalently, with
��-encoding) is better than the filter obtained by direct quantization.
Both filters are outperformed by the designs generated with our proce-
dure with larger horizons.

Further insight can be gained by inspecting the frequency distribu-
tion of the approximation error in Figs. 6 and 7. Fig. 6 depicts the fre-
quency response of the filtered error function E(z) defined in (7) and
illustrates that the filter designed with N = 3 is indeed closer to T (z)

Fig. 5. Achieved cost as a function of the horizonN .

Fig. 6. Frequency response of the filtered error function E(z) for (solid)
N = 3 and for (dashed) direct quantization.

Fig. 7. Frequency response of the unfiltered error T (z)�H(z) for (solid)
N = 3 and for (dashed) direct quantization.

than the filter obtained by directly quantizing coefficients. As is ap-
parent from the frequency responses of the unfiltered errorT (z)�H(z)
included in Fig. 7, this performance increase is accomplished by con-
centrating the approximation error mostly in the less-important higher
frequencies, as dictated by the weighting functionW (z).
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VII. CONCLUSIONS

This correspondence has introduced a novel methodology for the de-
sign of discrete coefficient FIR filters. In particular, we have formulated
the problem as a moving horizon time domain optimization problem.
This leads to a practical procedure that provides a near-optimal solu-
tion with low computational complexity. The method is suitable for the
design of long FIR filters. The design method can be implemented as a
closed loop and includes �� encoders as a special case. The scheme
typically provides better performance than ��-based approaches.

APPENDIX A
TREATMENT OF IIR FILTERS

We will briefly outline how to treat the design of rational filters with
discrete coefficients. For that purpose, suppose that the (stable) target
filter T (z) is described via

T (z) =

m

i=0

tbiz
m�i

m

i=0

taizm�i
=

TB(z)

TA(z)

and the discrete coefficient filter to be designed is parameterized as

H(z) =

m

i=0

hbiz
m�i

m

i=0

haizm�i
=

HB(z)

HA(z)
: (19)

The design problem now consists of minimizing the cost function (3)
by choosing the 2m coefficients in (19). As before, each of these pa-
rameters is restricted to belong to the set .

This problem can be translated into the present framework via some
straightforward approximations. To that extent, we define

�B(z) HB(z)� TB(z)

�A(z) HA(z)� TA(z)

so that5

T �H =
TB

TA
�
TB +�B

TA +�A

=
TB

TA
�

TB +�B

TA(1 + (TA)�1�A)

�
TB

TA
�

(TB +�B)(1 + (TA)
�1�A)

TA

� �
�B

TA
�
TB�A

(TA)2
:

If we define now the two-input one-output filter

W �W [T�1A TBT
�2

A ]

and the one-input two-output filters

T [TB TA ]T

H [HB HA ]T

then

W (T �H) �W (H � T ):

As a consequence, the cost V in (6) can be approximated by J , which
is defined as

J
1

2�

2�

0

jW (ej!)(T (ej!)�H(ej!))j2d!:

5For ease of notation, we omit the argument in these expressions.

Themethodology described in Section III can now be readily applied
to this cost function. The only difference resides in the fact that, in
the IIR case, the decision variables are vector valued. This presents no
conceptual difficulties. In particular, (8) should simply be replaced by

xi+1 =Axi +B(ti � hi)

ei = c
T
xi + d

T
(ti � hi)

where xi 2 n is the state vector in

W (z) =d
T
+ c

T (zI
n
�A)�1B

and

ti [ tbi tai ]
T

hi [hbi hai ]
T
:

Each of the vectors hi is restricted to belong to 2, and the
decision variables in the resulting moving horizon approach are now
constrained to N , rather than to N . Note that as in (8), feig are
scalars.

APPENDIX B
PROOF OF LEMMA 1

The cost function Vk defined in (9) can be written in vector form as
Vk = eTk ek , with

ek [ ek ek+1 . . . ek+N�1 ]:

Iteration of (8) yields

ek = ���(tk � hk) + ���xk

so that

Vk(hk) = (���hk)
T���hk � 2(���hk)

T (���tk +���xk)

+(���tk +���xk)
T (���tk +���xk): (20)

We introduce the change of variables

pk ���hk

which transforms the set N into N , which is defined in (17). Ex-
pression (20) then allows us to characterize the optimizer h?k as

h
?
k = ����1 arg min

p 2

'k(pk) (21)

where

'k(pk) p
T
k pk � 2(pk)

T (���tk +���xk):

The level sets of 'k are spheres in N centered at ���tk + ���xk .
Therefore, the constrained optimizer is given by

arg min
p 2

'k(pk) = q (���tk +���xk):

Equation (21) then establishes the Lemma.
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Stability Analysis of 2-D Digital Filters With Saturation
Arithmetic: An LMI Approach

Haranath Kar and Vimal Singh

Abstract—An improved LMI-based criterion for the nonexistence of
overflow oscillations in two–dimensional (2-D) digital filters described
by the Roesser model employing saturation arithmetic is presented. The
criterion makes use of the structural properties (as prevailing in the system
under consideration) of the saturation nonlinearities in a greater detail
than the usual sector restriction [0 1].

Index Terms—Asymptotic stability, digital filter wordlength effects, Lya-
punov methods, multidimensional digital filters.

I. INTRODUCTION

Two-dimensional (2-D) systems have found many applications
such as image processing, seismographic data processing, thermal
processes, gas absorbtion, water stream heating, etc. [1]. Thus, the
design of 2-D systems is an interesting and challenging problem.
When designing discrete systems using fixed-point arithmetic, one
encounters quantization and overflow nonlinearities. The presence of
such nonlinearities may result in the instability of the designed system.
The quantization and overflow nonlinearities may interact with each
other. However, if the number of quantization steps is large or, in
other words, the internal wordlength is sufficiently long, then they can
be regarded as decoupled or noninteracting and can be investigated
separately. Under this decoupling approximation, quantization effects
may be neglected when studying the effects of overflow [2]–[4].
This correspondence deals with the problem of global asymptotic

stability of zero-input 2-D digital filters described by the Roessermodel
[5] using saturation overflow arithmetic. It will be assumed that the
effects of quantization are negligible. Specifically, consider the state-
space quarter-plane model given by (1a)–(1e), shown at the bottom of
the next page, where xxxh 2 RRRm, xxxv 2 RRRn, AAA11 2 RRRm�m, AAA12 2
RRRm�n, AAA21 2 RRRn�m, AAA22 2 RRRn�n, and T denotes the transpose.
The saturation nonlinearities given by
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are under consideration. It is understood that system (1) has a finite set
of initial conditions, i.e., there exist two positive integersK andL such
that [4], [6]

xxx
v(k; l) = 0; k � K; xxx

h(k; l) = 0; l � L: (1h)
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